An approach to turbulent flame theory

Author:

Williams F. A.

Abstract

Is it possible to express the problem of calculating turbulent flame speeds as an eigenvalue problem that is analogous to the laminar flame speed problem? It is argued for grid turbulence that the answer is affirmative, and some benefits of pursuing such a calculation are exploited for the limiting case of a first-order reaction with vanishingly small heat release. The streamwise turbulent transport of reactant occupies a central role in the analysis. The equation governing the ensemble average of this quantity assumes different simplified forms in the limits of small-scale and large-scale turbulence. The criterion which is obtained for separating the small-scale and large-scale régimes differs from that of Damköhler and also from that of Kovasznay and Klimov. In the small-scale régime, turbulence produces a spatially varying diffusivity, the form of which can be ascertained only through an investigation of non-linear equations describing the statistical dynamics of production and decay of the velocity–concentration correlation. In the large-scale régime, which is of greater practical importance, the ensemble average of the streamwise turbulent reactant flux satisfies a linear ordinary differential equation whose solution for the growth and decay of the flux contains effects resembling wrinkling of the laminar flame, increasing of the effective diffusivity and augmentation of the effective reaction rate. An exact solution to the linear eigenvalue problem which arises in the large-scale limit reveals that turbulence enhances mean reactant consumption in the upstream portion of the flame and retards reactant consumption downstream. Formulas are given for the increase in flame speed and the increase in flame thickness that are produced by turbulence in the large-scale limit. Since the equations are relatively tractable in the large-scale limit, it is suggested that further study of these equations may yield improved descriptions of realistic turbulent flames.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference12 articles.

1. Chandrasekhar, S. 1950 Phil. Trans. A242,557–577.

2. Markstein, G. H. 1951 J. Aero. Sci. 18,199–209.

3. Richardson, J. M. 1956 Proceedings Gas Dynamics Symposium on Aerothermochemistry, Northwestern Univ. Evantson, Ill. pp.169–177.

4. Corrsin, S. 1952 J. Appl. Phys. 23,113–118.

5. Damköhler, G. 1940 Z. Elektrochem. 46,601–626.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3