Effect of gravity on the stability of thermocapillary convection in a horizontal fluid layer

Author:

CHAN CHO LIK,CHEN C. F.

Abstract

Smith & Davis (J. Fluid Mech., vol. 132, 1983, pp. 119–144) considered the stability of thermocapillary convection in a horizontal fluid layer with an upper free surface generated by a horizontal temperature gradient. They showed that for a return-flow velocity profile, the convection will become unstable in the hydrothermal mode with waves propagating upstream obliquely. Their findings provided a theoretical explanation for the defects often found in crystals grown by the floating-zone technique and in thin-film coating processes. Their predictions were verified experimentally by Riley & Neitzel (J. Fluid Mech., vol. 359, 1998, pp. 143–164) in an experiment with 0.75 mm thick layer of silicone oil. Their results with 1 and 1.25 mm thick layers show that as the thickness of the layer is increased, the angle of propagation, the frequency of oscillation and the phase speed of the hydrothermal wave instability decrease, while the wavelength stays nearly constant. We have extended the linear stability analysis of the problem with the effect of gravity included. It is found that when the Grashof number Gr is increased from zero, the angle of propagation first increases slightly, reaches a maximum and then decreases steadily to zero at Gr = 18. The phase speed, the frequency of oscillation and the wavelength of the instability waves all decrease with increasing Grashof number. For Gr larger than 18, there is the onset of the instability into travelling transverse waves. We have also carried out energy analysis at the time of the instability onset. It is found that the major contribution to the energy of the disturbances is from the surface-tension effect. As the gravitational effect is increased, there is a reduction in the kinetic energy supply to sustain the motion of the disturbances. We also found that it requires more kinetic energy to sustain the hydrothermal mode of instability than that required for the travelling transverse mode of instability. As a result, with increasing Grashof number, the kinetic energy available for the disturbances decreases, causing the angle of propagation to gradually decrease until finally reaching zero at Gr = 18.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3