Nonlinear effects in the response of a floating ice plate to a moving load

Author:

PĂRĂU EMILIAN,DIAS FREDERIC

Abstract

The steady response of an infinite unbroken floating ice sheet to a moving load is considered. It is assumed that the ice sheet is supported below by water of finite uniform depth. For a concentrated line load, earlier studies based on the linearization of the problem have shown that there are two ‘critical’ load speeds near which the steady deflection is unbounded. These two speeds are the speed c0 of gravity waves on shallow water and the minimum phase speed cmin. Since deflections cannot become infinite as the load speed approaches a critical speed, Nevel (1970) suggested nonlinear effects, dissipation or inhomogeneity of the ice, as possible explanations. The present study is restricted to the effects of nonlinearity when the load speed is close to cmin. A weakly nonlinear analysis, based on dynamical systems theory and on normal forms, is performed. The difference between the critical speed cmin and the load speed U is taken as the bifurcation parameter. The resulting normal form reduces at leading order to a forced nonlinear Schrödinger equation, which can be integrated exactly. It is shown that the water depth plays a role in the effects of nonlinearity. For large enough water depths, ice deflections in the form of solitary waves exist for all speeds up to (and including) cmin. For small enough water depths, steady bounded deflections exist only for speeds up to U*, with U* < cmin. The weakly nonlinear results are validated by comparison with numerical results based on the full governing equations. The model is validated by comparison with experimental results in Antarctica (deep water) and in a lake in Japan (relatively shallow water). Finally, nonlinear effects are compared with dissipation effects. Our main conclusion is that nonlinear effects play a role in the response of a floating ice plate to a load moving at a speed slightly smaller than cmin. In deep water, they are a possible explanation for the persistence of bounded ice deflections for load speeds up to cmin. In shallow water, there seems to be an apparent contradiction, since bounded ice deflections have been observed for speeds up to cmin while the theoretical results predict bounded ice deflection only for speeds up to U* < cmin. But in practice the value of U* is so close to the value of cmin that it is difficult to distinguish between these two values.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3