Oscillatory enhancement of the squeezing flow of yield stress fluids: a novel experimental result

Author:

ZWICK K. J.,AYYASWAMY P. S.,COHEN I. M.

Abstract

The extrusion of a yield stress fluid from the space between two parallel plates is investigated experimentally. Oscillating the magnitude of the squeezing force about a mean value (F=f[1+αcos(ωt)]) was observed to significantly enhance the flow rate of yield stress fluids, while having no effect on the flow rate of Newtonian fluids. This is a novel result. The enhancement depends on the magnitude of the force, the oscillatory frequency and amplitude, the fluid being squeezed, and the thickness of the fluid layer. Non-dimensional results for the various flow quantities have been presented by using the flow predicted for the constant-force squeezing of a Herschel–Bulkley yield stress fluid as the reference. In the limit of constant-force squeezing, the present experimental results compare very well with those of our earlier theoretical model for this situation (Zwick, Ayyaswamy & Cohen 1996). The results presented in this paper have significance, among many applications, for injection moulding, in the adhesive bonding of microelectronic chips, and in surgical procedures employed in health care.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3