A numerical study of the modulation of isotropic turbulence by suspended particles

Author:

SUNDARAM SHIVSHANKAR,COLLINS LANCE R.

Abstract

Direct numerical simulations of a turbulent fluid laden with finite-sized particles are performed. The computations, on a 1283 grid along with a maximum of 262 144 particles, incorporated both direct particle interactions via hard-sphere collisions and particle feedback. The ‘reverse’ coupling is accomplished in a manner ensuring correct discrete energy conservation (Sundaram & Collins 1996). A novel two-field formalism (Sundaram & Collins 1994a) is employed to calculate two-point correlations and equivalent spectral densities. An important consideration in these simulations is the initial state of fluid and particles. That is, the initial conditions must be chosen so as to allow a meaningful comparison of the different runs. Using such a carefully initialized set of runs, particle inertia was observed to increase both the viscous and drag dissipations; however, simultaneously, it also caused particle velocities to correlate for longer distances. The combination of effects suggests a mechanism for turbulence enhancement or suppression that depends on the parameter values. Like previous investigators, ‘pivoting’ or crossover of the fluid energy spectra was observed. A possible new scaling for this phenomenon is suggested. Furthermore, investigations of the influence of particle mass and number densities on turbulence modulation are also carried out.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3