Droplet–turbulence interactions in low-Mach-number homogeneous shear two-phase flows

Author:

MASHAYEK FARZAD

Abstract

Several important issues pertaining to dispersion and polydispersity of droplets in turbulent flows are investigated via direct numerical simulation (DNS). The carrier phase is considered in the Eulerian context, the dispersed phase is tracked in the Lagrangian frame and the interactions between the phases are taken into account in a realistic two-way (coupled) formulation. The resulting scheme is applied for extensive DNS of low-Mach-number, homogeneous shear turbulent flows laden with droplets. Several cases with one- and two-way couplings are considered for both non-evaporating and evaporating droplets. The effects of the mass loading ratio, the droplet time constant, and thermodynamic parameters, such as the droplet specific heat, the droplet latent heat of evaporation, and the boiling temperature, on the turbulence and the droplets are investigated. The effects of the initial droplet temperature and the initial vapour mass fraction in the carrier phase are also studied. The gravity effects are not considered as the numerical methodology is only applicable in the absence of gravity. The evolution of the turbulence kinetic energy and the mean internal energy of both phases is studied by analysing various terms in their transport equations. The results for the non-evaporating droplets show that the presence of the droplets decreases the turbulence kinetic energy of the carrier phase while increasing the level of anisotropy of the flow. The droplet streamwise velocity variance is larger than that of the fluid, and the ratio of the two increases with the increase of the droplet time constant. Evaporation increases both the turbulence kinetic energy and the mean internal energy of the carrier phase by mass transfer. In general, evaporation is controlled by the vapour mass fraction gradient around the droplet when the initial temperature difference between the phases is negligible. In cases with small initial droplet temperature, on the other hand, the convective heat transfer is more important in the evaporation process. At long times, the evaporation rate approaches asymptotic values depending on the values of various parameters. It is shown that the evaporation rate is larger for droplets residing in high-strain-rate regions of the flow, mainly due to larger droplet Reynolds numbers in these regions. For both the evaporating and the non-evaporating droplets, the root mean square (r.m.s.) of the temperature fluctuations of both phases becomes independent of the initial droplet temperature at long times. Some issues relevant to modelling of turbulent flows laden with droplets are also discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3