Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong sidewall jets

Author:

BURR ULRICH,BARLEON L.,MÜLLER U.,TSINOBER A.

Abstract

This paper presents an experimental study of the momentum and heat transport in a turbulent magnetohydrodynamic duct flow with strong wall jets at the walls parallel to the magnetic field. Local turbulent flow quantities are measured by a traversable combined temperature-potential-difference probe. The simultaneous measurements of time-dependent velocity and temperature signals facilitates the evaluation of Reynolds stresses and turbulent heat fluxes. Integral quantities such as pressure drop and temperature at the heated wall are evaluated and compared with results from conservative design correlations. At strong enough magnetic fields the destabilizing effect of strong shear generated at the sidewalls wins the competition with the damping effect by Joule's dissipation and turbulent side layers are created. Due to the strong non-isotropic character of the electromagnetic forces, the turbulence structure is characterized by large-scale two-dimensional vortices with their axis aligned in the direction of the magnetic field. As most of the turbulent kinetic energy is concentrated in the near-wall turbulent side layers, the temperatures at the heated wall are governed by the development of the thermal boundary layer in the turbulent flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3