Observations and scaling of travelling bubble cavitation

Author:

De Chizelle Y. Kuhn,Ceccio S. L.,Brennen C. E.

Abstract

Recent observations of growing and collapsing bubbles in flows over axisymmetric headforms have revealed the complexity of the ‘micro-fluid-mechanics’ associated with these bubbles (van der Meulen & van Renesse 1989; Briancon-Marjollet et al. 1990; Ceccio & Brennen 1991). Among the complex features observed were the bubble-to-bubble and bubble-to-boundary-layer interactions which leads to the shearing of the underside of the bubble and alters the collapsing process. All of these previous tests, though, were performed on small headform sizes. The focus of this research is to analyse the scaling effects of these phenomena due to variations in model size, Reynolds number and cavitation number. For this purpose, cavitating flows over Schiebe headforms of different sizes (5.08, 25.4 and 50.8 cm in diameter) were studied in the David Taylor Large Cavitation Channel (LCC). The bubble dynamics captured using high-speed film and electrode sensors are presented along with the noise signals generated during the collapse of the cavities.In the light of the complexity of the dynamics of the travelling bubbles and the important bubble/bubble interactions, it is clear that the spherical Rayleigh-Plesset analysis cannot reproduce many of the phenomena observed. For this purpose an unsteady numerical code was developed which uses travelling sources to model the interactions between the bubble (or bubbles) and the pressure gradients in the irrotational flow outside the boundary layer on the headform. The paper compares the results of this numerical code with the present experimental results and demonstrates good qualitative agreement between the two.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference47 articles.

1. Shima, A. , Takayama, K. , Tomita, Y. & Miura, N. 1981 An experimental study of effects of a solid wall on the motion of bubbles and shock waves in bubble collapse.Acustica 48,293–301.

2. Holl, J. W. & Wislicenus, G. F. 1961 Scale effects on cavitation.Trans. ASME D:J. Basic Engng 83,385–398.

3. Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity.Phil. Mag. 34,94–98.

4. Kuhn de Chizelle, Y. , Ceccio, S. L. , Brennen, C. E. & Shen, Y. 1992b Cavitation scaling experiments with headforms: bubble acoustics. Proc. 19th Symp. on Naval Hydrodynamics, Seoul, Korea , pp.72–84.National Academy Press.

5. Morgan, W. B. 1990 David Taylor Research Center's large cavitation channel.Proc. 19th Intl Towing Tank Conf., Madrid,Vol. 2, pp.419–427.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3