Gravity-induced coalescence of drops at arbitrary Péclet numbers

Author:

Zinchenko Alexander Z.,Davis Robert H.

Abstract

The collision efficiency in a dilute suspension of sedimenting drops is considered, with allowance for particle Brownian motion and van der Waals attractive force. The drops are assumed to be of the same density, but they differ in size. Drop deformation and fluid inertia are neglected. Owing to small particle volume fraction, the analysis is restricted to binary interactions and includes the solution of the full quasi-steady Fokker—Planck equation for the pair-distribution function. Unlike previous studies on drop or solid particle collisions, a numerical solution is presented for arbitrary Péclet numbers, Pe, thus covering the whole range of particle size in typical hydrosols. Our technique is mainly based on an analytical continuation into the plane of complex Péclet number and a special conformal mapping, to represent the solution as a convergent power series for all real Péclet numbers. This efficient algorithm is shown to apply to a variety of convection—diffusion problems. The pair-distribution function is expanded into Legendre polynomials, and a finite-difference scheme with respect to particle separation is used. Two-drop mobility functions for hydrodynamic interactions are provided from exact bispherical coordinate solutions and near-field asymptotics. The collision efficiency is calculated for wide ranges of the size ratio, the drop-to-medium viscosity ratio, and the Péclet number, both with and without interdroplet forces. Solid spheres are considered as a limiting case; attractive van der Waals forces are required for non-zero collision rates in this case. For Pe [Gt ] 1, the correction to the asymptotic limit Pe → ∞ is O(Pe−1/2). For Pe [Lt ] 1, the first two terms in an asymptotic expansion for the collision efficiency are C/Pe + ½C2, where the constant C is determined from the Brownian solution in the limit Pe → 0. The numerical results are in excellent agreement with these limits. For intermediate Pe, the numerical results show that Brownian motion is important for PeO(102). For Pe = 10, the trajectory analysis for Pe → ∞ may underestimate the collision rate by a factor of two. A simpler, approximate solution based on neglecting the transversal diffusion is also considered and compared to the exact solution. The agreement is within 2–3% for all conditions investigated. The effect of van der Waals attractions on the collision efficiency is studied for a wide range of droplet sizes. Except for very high drop-to-medium viscosity ratios, the effect is relatively small, especially when electromagnetic retardation is accounted for.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference33 articles.

1. Rushton, E. & Davies, G. A. 1973 The slow unsteady settling of two fluid spheres along their line of centers.Appl. Sci. Res. 28,37–61.

2. Spielman, L. A. 1970 Viscous interactions in Brownian coagulation.J. Colloid Interface Sci. 562–571.

3. Batchelor, G. K. 1976 Brownian diffusion of particles with hydrodynamic interaction.J. Fluid Mech. 74,1–29.

4. Zinchenko, A. Z. 1980 The slow asymmetric motion of two drops in a viscous medium.Prikl. Mat. Mech. 44,30–37.

5. Zinchenko, A. Z. 1982 Calculations of the effectiveness of gravitational coagulation of drops with allowance for internal circulation.Prikl. Mat. Mech. 46,58–65.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3