The laminar decay of suddenly blocked channel and pipe flows

Author:

Weinbaum S.,Parker K. H.

Abstract

This paper is a theoretical investigation of the stable laminar decay of a fully established channel or pipe flow following a sudden blockage such as would be caused by the rapid closure of a valve or imposition of an end wall or gate. The development of the subsequent velocity and pressure fields is examined from the instant the initial pressure wave passes until the final decay of all motion. Three time scales of hydrodynamic interest are identified and the relevant solutions are obtained. The time scales are as follows: (i) a very short time characteristic of the passage of the pressure wave during which the velocity field adjusts inviscidly to the new boundary conditions imposed by the presence of the end wall, (ii) a short diffusion time during which the displacement interaction generated by the diffusion of the primary Rayleigh layer induces a substantial secondary motion with distinct side-wall boundary layers and an inviscid core and (iii) a long diffusion time during which the boundary layers fill the entire channel or pipe and the residual motion then dies out. The secondary flow for short diffusion times is of special interest in that it is an example of an unsteady boundary layer where the external pressure gradient and inviscid outer flow are unknown and determined by the integrated time history of the combined mass flow displacement generated by the primary- and secondary-flow boundary layers. The paper closes with some preliminary comments and experimental observations on decelerating pipe flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference17 articles.

1. Nerem, R. M. & Seed, W. A. 1972 In vivo study of the nature of aortic flow disturbances.Cardiovasc. Res. 6,1–14.

2. Stuart, J. T. 1963 In Laminar Boundary Layers (ed. L. Rosenhead ), chap. 7,pp.349–408.Oxford:Clarendon Press.

3. Batchelor, G. K. 1967 An Introduction to Fluid Mechanics , $4.3.Cambridge University Press.

4. VAN DYKE, M. 1970 Entry flow in a channel J. Fluid Mech. 44,813–823.

5. Wilson, S. D. R. 1971 Entry flow in a channel. Part 2 J. Fluid Mech. 46,787–799.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3