On the propulsion of micro-organisms near solid boundaries

Author:

Katz David F.

Abstract

In this paper an infinite waving sheet is used to model a micro-organism swimming either parallel to a single plane wall, or along a channel formed by two such walls. The sheet surface, which undergoes small amplitude waves, can represent either a single flagellum or the envelope of the tips of numerous cilia. Two different solutions of the equations of motion are presented, depending upon whether or not the wave amplitude is small compared with the separation distances between the sheet and walls. It is found that the velocity of propulsion is bounded by the velocity of wave propagation by the sheet. Both the propulsive velocity and rate of working by the sheet increase as the separation distances decrease. However, it is demonstrated that suitable alterations in wave speed or wave shape can fix the rate of working while still causing increases in propulsive velocity. Reductions in propagated wave speed, i.e. beat frequency, are particularly effective in this regard.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Mestre N. J. DE1973 Low Reynolds number fall of slender cylinders near boundaries. J. Fluid Mech.,58,641–656.

2. Taylor G. I. 1951 Analysis of the swimming of microscopic organisms.Proc. Roy. Soc. A209,447–461.

3. Blake J. R. 1971 Infinite models for ciliary propulsion. J. Fluid Mech.,49,209–222.

4. Mestre, N. J. DE & Russel, W. B. 1974 Slender cylinder near a plane wall in Stokes flow. (Submitted toJ. Engng Math.)

5. Katz D. F. 1972 On the biophysics of in wiwo sperm transport. Ph.D. thesis,University of California,Berkeley.

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3