Lifting multi-blade flows with interaction

Author:

BOWLES R. G. A.,SMITH F. T.

Abstract

Planar flow past multiple successive blades and wakes is studied for nearly aligned configurations with normal non-symmetry inducing lift. The typical blade lies relatively near the centreline of the oncoming wake from the preceding blade. The central motion over a wide parameter range is in condensed periodic boundary layers and wakes with fixed displacement, buried within surrounding incident shear flow. This is accompanied, however, by streamwise jumps in the pressure, velocity and mass flux, across the leading edge of each blade, a new and surprising feature which is supported by the combination of incident shears and a solid surface and which is related to the normal flow through the multi-blade system. The leading-edge jumps are required in order to satisfy the equi-pressure condition at the trailing edge. Computational results include separating flows and show the lift and drag, and these are followed by a short-blade analysis which captures the main flow properties explicitly. The results agree qualitatively with experiments and direct simulations for rotor blade flows. The jump feature also extends for example to a single blade immersed in the relatively large wake of an upstream blade.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skimming impacts and rebounds of smoothly shaped bodies on shallow liquid layers;Journal of Engineering Mathematics;2020-09-08

2. On Dynamic Interactions Between Body Motion and Fluid Motion;Studies in Systems, Decision and Control;2019

3. Flooding and sinking of an originally skimming body;Journal of Engineering Mathematics;2017-08-02

4. Generalized Kutta–Joukowski theorem for multi-vortex and multi-airfoil flow (a lumped vortex model);Chinese Journal of Aeronautics;2014-02

5. Interactive planar multi-blade flows with a global angle of attack;European Journal of Mechanics - B/Fluids;2013-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3