Solidification of an alloy cooled from above Part 2. Non-equilibrium interfacial kinetics

Author:

Kerr Ross C.,Woods Andrew W.,Worster M. Grae,Huppert Herbert E.

Abstract

The model developed in Part 1 for the solidification and convection that occurs when an alloy is cooled from above is extended to investigate the role of disequilibrium at the mush–liquid interface. Small departures from equilibrium are important because in a convecting system an interfacial temperature below its equilibrium value can drive the bulk temperature of the melt below its liquidus. This behaviour is observed in experiments and can result in crystallization within and at the base of the convecting melt. The additional crystals formed in the interior can settle to the base of the fluid and continue to grow, causing the composition of the melt to change. This ultimately affects the solidification at the roof. The effects of disequilibrium are explored in this paper by replacing the condition of marginal equilibrium at the interface used in the model of Part 1 with a kinetic growth law of the form $\dot{h}_1 = {\cal G}\delta T$, where $\dot{h}_1$ is the rate of advance of the mush–liquid interface, δT is the amount by which the interfacial temperature is below the liquidus temperature of the melt and [Gscr ] is an empirical constant. This modification enables the model to predict very accurately both the growth of the mushy layer and the development of supersaturation in the isopropanol experiments described in Part 1. An additional series of experiments, using aqueous solutions of sodium sulphate, is presented in which the development of supersaturation leads to the internal nucleation and growth of crystals. A further extension of the model is introduced which successfully accounts for this internal crystal growth and the changing composition of the melt. We discuss the implications of this work for geologists studying the formation of igneous rocks. Important conclusions include the facts that cooling the roof of a magma chamber can lead to crystallization at its floor and that vigorous convection can occur in a magma chamber even when there is no initial superheat.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference17 articles.

1. Woods, A. W. & Huppert, H. E. 1989 The growth of compositionally stratified solid above a horizontal boundary.J. Fluid Mech. 199,29–53.

2. Glicksman, M. E. & Voorhees, P. W. 1984 Ostwald ripening and relaxation in dendritic structures.Metall. Trans. 15,995–1001.

3. Kerr, R. C. , Woods, A. W. , Worster, M. G. & Huppert, H. E. 1990a Solidification of an alloy from above. Part 1. Equilibrium growth.J. Fluid Mech. 216,323–342.

4. Weast, R. C. (ed.)1971 CRC Handbook of Chemistry and Physics .The Chemical Rubber Co.

5. Kurz, W. & Fisher, D. J. 1986 Fundamentals of Solidification .Trans. Tech. Publications.

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3