Zigzag instability of vortex pairs in stratified and rotating fluids. Part 2. Analytical and numerical analyses.

Author:

BILLANT P.,DELONCLE A.,CHOMAZ J.-M.,OTHEGUY P.

Abstract

The three-dimensional stability of vertical vortex pairs in stratified and rotating fluids is investigated using the analytical approach established in Part 1 and the predictions are compared to the results of previous direct numerical stability analyses for pairs of co-rotating equal-strength Lamb–Oseen vortices and to new numerical analyses for equal-strength counter-rotating vortex pairs. A very good agreement between theoretical and numerical results is generally found, thereby providing a comprehensive description of the zigzag instability. Co-rotating and counter-rotating vortex pairs are most unstable to the zigzag instability when the Froude number Fh = Γ/(2πR2N) (where Γ is the vortex circulation, R the vortex radius and N the Brunt–Väisälä frequency) is lower than unity independently of the Rossby number Ro = Γ/(4πR2Ωb) (Ωb is the planetary rotation rate). In this range, the maximum growth rate is proportional to the strain Γ/(2πb2) (b is the separation distance between the vortices) and is almost independent of Fh and Ro. The most amplified wavelength scales like Fhb when the Rossby number is large and like Fhb/|Ro| when |Ro| ≪ 1, in agreement with previous results. While the zigzag instability always bends equal-strength co-rotating vortex pairs in a symmetric way, the instability is only quasi-antisymmetric for finite Ro for equal-strength counter-rotating vortex pairs because the cyclonic vortex is less bent than the anticyclonic vortex. The theory is less accurate for co-rotating vortex pairs around Ro ≈ −2 because the bending waves rotate very slowly for long wavelength. The discrepancy can be fully resolved by taking into account higher-order three-dimensional effects.When Fh is increased above unity, the growth rate of the zigzag instability is strongly reduced because the bending waves of each vortex are damped by a critical layer at the radius where the angular velocity of the vortex is equal to the Brunt–Väisälä frequency. The zigzag instability, however, continues to exist and is dominant up to a critical Froude number, which mostly depends on the Rossby number. Above this threshold, equal-strength co-rotating vortex pairs are stable with respect to long-wavelength bending disturbances whereas equal-strength counter-rotating vortex pairs become unstable to a quasi-symmetric instability resembling the Crow instability in homogeneous fluids. However, its growth rate is lower than in homogeneous fluids because of the damping by the critical layer. The structure of the critical layer obtained in the computations is in excellent agreement with the theoretical solution.Physically, the different stability properties of vortex pairs in stratified and rotating fluids compared to homogeneous fluids are shown to come from the reversal of the direction of the self-induced motion of bent vortices.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3