The thinning of lamellae in surfactant-free foams with non-Newtonian liquid phase

Author:

BRUSH L. N.,ROPER S. M.

Abstract

Thinning rates of liquid lamellae in surfactant-free non-Newtonian gas–liquid foams, appropriate for ceramic or polymer melts and also in metals near the melting point, are derived in two dimensions by matched asymptotic analysis valid at small capillary number. The liquid viscosity is modelled (i) as a power-law function of the shear rate and (ii) by the Ellis law. Equations governing gas–liquid interface dynamics and variations in liquid viscosity are derived within the lamellar, transition and plateau border regions of a corner of the liquid surrounding a gas bubble. The results show that the viscosity varies primarily in the very short transition region lying between the lamellar and the Plateau border regions where the shear rates can become very large. In contrast to a foam with Newtonian liquid, the matching condition which determines the rate of lamellar thinning is non-local. In all cases considered, calculated lamellar thinning rates exhibit an initial transient thinning regime, followed by a t−2 power-law thinning regime, similar to the behaviour seen in foams with Newtonian liquid phase. In semi-arid foam, in which the liquid fraction is O(1) in the small capillary number, results explicitly show that for both the power-law and Ellis-law model of viscosity, the thinning of lamella in non-Newtonian and Newtonian foams is governed by the same equation, from which scaling laws can be deduced. This result is consistent with recently published experimental results on forced foam drainage. However, in an arid foam, which has much smaller volume fraction of liquid resulting in an increase in the Plateau border radius of curvature as lamellar thinning progresses, the scaling law depends on the material and the thinning rate is not independent of the liquid viscosity model parameters. Calculations of thinning rates, viscosities, pressures, interface shapes and shear rates in the transition region are presented using data for real liquids from the literature. Although for shear-thinning fluids the power-law viscosity becomes infinite at the boundaries of the internal transition region where the shear rate is zero, the interface shape, the pressure and the internal shear rates calculated by both rheological models are indistinguishable.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3