The rate of spreading in spin coating

Author:

WILSON S. K.,HUNT R.,DUFFY B. R.

Abstract

In this paper we reconsider the fundamental problem of the centrifugally driven spreading of a thin drop of Newtonian fluid on a uniform solid substrate rotating with constant angular speed when surface-tension and moving-contact-line effects are significant. We discuss analytical solutions to a number of problems in the case of no surface tension and in the asymptotic limit of weak surface tension, as well as numerical solutions in the case of weak but finite surface tension, and compare their predictions for the evolution of the radius of the drop (prior to the onset of instability) with the experimental results of Fraysse & Homsy (1994) and Spaid & Homsy (1997). In particular, we provide a detailed analytical description of the no-surface-tension and weak-surface-tension asymptotic solutions. We demonstrate that, while the asymptotic solutions do indeed capture many of the qualitative features of the experimental results, quantitative agreement for the evolution of the radius of the drop prior to the onset of instability is possible only when weak but finite surface-tension effects are included. Furthermore, we also show that both a fixed- and a specific variable-contact-angle condition (or ‘Tanner law’) are capable of reproducing the experimental results well.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3