Vortex merger in rotating stratified flows

Author:

DRITSCHEL DAVID G.

Abstract

This paper describes the interaction of symmetric vortices in a three-dimensional quasi-geostrophic fluid. The initial vortices are taken to be uniform-potential-vorticity ellipsoids, of height 2h and width 2R, and with centres at (±d/2; 0, 0), embedded within a background flow having constant background rotational and buoyancy frequencies, f/2 and N respectively. This problem was previously studied by von Hardenburg et al. (2000), who determined the dimensionless critical merger distance d/R as a function of the height-to-width aspect ratio h/R (scaled by f/N). Their study, however, was limited to small to moderate values of h/R, as it was anticipated that merger at large h/R would reduce to that for two columnar two-dimensional vortices, i.e. d/R ≈ 3.31. Here, it is shown that no such two-dimensional limit exists; merger is found to occur at any aspect ratio, with dh for h/R [Gt ] 1.New results are also found for small to moderate values of h/R. In particular, our numerical simulations reveal that asymmetric merger is predominant, despite the initial conditions, if one includes a small amount of random noise. For small to moderate h/R, decreasing the initial separation distance d first results in a weak exchange of material, with one vortex growing at the expense of the other. As d decreases further, this exchange increases and leads to two dominant but strongly asymmetric vortices. Finally, for yet smaller d, rapid merger into a single dominant vortex occurs – in effect the initial vortices exchange nearly all of their material with one another in a nearly symmetrical fashion.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3