Ensemble-averaged measurements in the turbulent near wake of two side-by-side square cylinders

Author:

KOLÁŘ V.,LYN D. A.,RODI W.

Abstract

The ensemble-averaged characteristics of the turbulent near-wake flow around two side-by-side identical square cylinders at a Reynolds number ≈23100 have been studied using a two-component laser-Doppler velocimeter system. The work focuses on a single case with a gap/diameter ratio of 2, for which the resulting individual vortex streets are coupled so as to yield a flow predominantly symmetric about the line midway between the two cylinders. Data sorting or conditioning according to phase was performed with the aid of pressure signals taken from taps on a sidewall of each cylinder. The two-cylinder results are compared in detail to results from a previous study of the one-cylinder case. Vortex structures shed on the side towards the flow centreline, termed inner structures, are distinguished from those shed on the free-stream side, termed outer structures, and the differences between the features associated with the two different structures are examined. The circulation associated with outer structures evolves downstream in a manner similar to that observed in the one-cylinder case, but the circulation of the inner structures is found to decrease dramatically downstream. This not only gives support to previous theoretical predictions but also reconciles these with previously apparently conflicting experimental observations. Information regarding vortex structure motion and the relevant length and time scales is obtained. Differences between momentum and vorticity transport, particularly across the flow centreline are pointed out, and effective turbulent vorticity fluxes are defined. Similarities in local flow topologies in one- and two-cylinder cases are discussed, and the role of local velocity-gradient invariants and their relationship to critical points and turbulence statistics are examined.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3