Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation

Author:

XIAO Z.,WAN M.,CHEN S.,EYINK G. L.

Abstract

We report an investigation of inverse energy cascade in steady-state two-dimensional turbulence by direct numerical simulation (DNS) of the two-dimensional Navier–Stokes equation, with small-scale forcing and large-scale damping. We employed several types of damping and dissipation mechanisms in simulations up to 20482resolution. For all these simulations we obtained a wavenumber range for which the mean spectral energy flux is a negative constant and the energy spectrum scales ask−5/3, consistent with the predictions of Kraichnan (Phys. Fluids, vol. 439, 1967, p. 1417). To gain further insight, we investigated the energy cascade in physical space, employing a local energy flux defined by smooth filtering. We found that the inverse energy cascade is scale local, but that the strongly local contribution vanishes identically, as argued by Kraichnan (J. Fluid Mech., vol. 47, 1971, p. 525). The mean flux across a length scale ℓ was shown to be due mainly to interactions with modes two to eight times smaller. A major part of our investigation was devoted to identifying the physical mechanism of the two-dimensional inverse energy cascade. One popular idea is that inverse energy cascade proceeds via merger of like-sign vortices. We made a quantitative study employing a precise topological criterion of merger events. Our statistical analysis showed that vortex mergers play a negligible direct role in producing mean inverse energy flux in our simulations. Instead, we obtained with the help of other works considerable evidence in favour of a ‘vortex thinning’ mechanism, according to which the large-scale strains do negative work against turbulent stress as they stretch out the isolines of small-scale vorticity. In particular, we studied a multi-scale gradient (MSG) expansion developed by Eyink (J. Fluid Mech., vol. 549, 2006a, p. 159) for the turbulent stress, whose contributions to inverse cascade can all be explained by ‘thinning’. The MSG expansion up to second order in space gradients was found to predict well the magnitude, spatial structure and scale distribution of the local energy flux. The majority of mean flux was found to be due to the relative rotation of strain matrices at different length scales, a first-order effect of ‘thinning’. The remainder arose from two second-order effects, differential strain rotation and vorticity gradient stretching. Our findings give strong support to vortex thinning as the fundamental mechanism of two-dimensional inverse energy cascade.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3