An experimental study of the instability of the laminar Ekman boundary layer

Author:

Faller Alan J.

Abstract

This study concerns the stability of the steady laminar boundary-layer flow of a homogeneous fluid which occurs in a rotating system when the relative flow is slow compared to the basic speed of rotation. Such a flow is called an Ekman boundary-layer flow after V. W. Ekman who considered the theory of such flows with application to the wind-induced drift of the surface waters of the ocean.Ekman flow was produced in a large cylindrical rotating tank by withdrawing water from the centre and introducing it at the rim. This created a steady-state symmetrical vortex in which the flow from the rim to the centre took place entirely in the shallow viscous boundary layer at the bottom. This boundary-layer flow became unstable above the critical Reynolds number$Re_c = vD|v = 125 \pm 5$wherevis the tangential speed of flow,$D = (v| \Omega)^{\frac {1}{2}}$is the characteristic depth of the boundary layer,vis the kinematic viscosity, and Ω is the basic speed of rotation. The initial instability was similar to that which occurs in the boundary layer on a rotating disk, having a banded form with a characteristic angle to the basic flow and with the band spacing proportional to the depth of the boundary layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convective instability of Ekman boundary layer flow of a Newtonian fluid over a stretchable rotating disk;International Journal of Modelling and Simulation;2024-03-12

2. Turbulence in the Ice Shelf–Ocean Boundary Current and Its Sensitivity to Model Resolution;Journal of Physical Oceanography;2023-02

3. Instabilities and routes to turbulence in rotating disc boundary layers and cavities;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-01-30

4. Stator Design Method in Rotor–Stator Interference Flow Fields in Order to Suppress the Vibration of Bladed Disks;Applied Sciences;2022-08-25

5. Tropical Cyclones;Atmosphere-Ocean;2022-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3