Nonlinear long-wave stability of superposed fluids in an inclined channel

Author:

Tilley B. S.,Davis S. H.,Bankoff S. G.

Abstract

We consider the two-layer flow of immiscible, viscous, incompressible fluids in an inclined channel. We use long-wave theory to obtain a strongly nonlinear evolution equation which describes the motion of the interface. This equation includes the physical effects of viscosity stratification, density stratification, and shear. A weakly nonlinear analysis of this equation yields a Kuramoto–Sivashinsky equation, which possesses a quadratic nonlinearity. However, certain physical situations exist in two-layer flow for which modifications of the Kuramoto–Sivashinsky equation are physically pertinent. In particular, the presence of the second layer can mediate the wave-steepening instability found in single-phase falling films, requiring the inclusion of a cubic nonlinearity in the weakly nonlinear analysis. The introduction of the cubic nonlinearity destroys the symmetry-breaking bifurcations of the Kuramoto–Sivashinsky equation, and new isolated solution branches emerge as the strength of the cubic nonlinearity increases. Bistability between these new solutions and those associated with the Kuramoto–Sivashinsky equation is found, as well as the formation of a hysteresis loop from smaller-amplitude travelling waves to larger-amplitude travelling waves. The physical implications of these dynamics to the phenomenon of laminar flooding in a channel are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference33 articles.

1. Frisch, U. , She, Z. S. & Thual, O. 1986 J. Fluid Mech. 168,221.

2. Hooper, A. P. & Grimshaw, R. 1985 Phys. Fluids 28,37.

3. Chen, L. H. & Chang, H. C. 1986 Chem. Engng Sci. 41,2477.

4. Tilley, B. S. 1994 Stability of two-layer flow in an inclined channel.PhD thesis,Department of Engineering Sciences and Applied Mathematics,Northwestern University.

5. Golubitsky, M. & Schaeffer, D. G. 1985 Singularities and Groups in Bifurcation Theory .Springer.

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3