The behaviour of clusters of spheres falling in a viscous fluid Part 1. Experiment

Author:

Jayaweera K. O. L. F.,Mason B. J.,Slack G. W.

Abstract

The sedimentation of small clusters of uniform spheres, falling freely through a viscous liquid, has been studied with Reynolds numbers (based on diameter of the sphere and its velocity of free fall in the unbounded fluid) of individual spheres ranging from 10−4 to 10. The fall velocity of a cluster is, in all cases, greater than that of individual spheres, the more so when the spheres are closer together. Two spheres falling side-by-side rotate inwards and separate as they fall if Re > 0·05, but no rotation nor separation is observed for Re < 0·03. When equal-sized spheres of Re > 1 fall vertically one behind the other, the rear sphere is accelerated into the wake of the leader, rotates, round it and separates from it when the line of centres is horizontal. If two spheres of unequal size but the same individual terminal velocity fall together, the smaller always travels faster than the larger. When three similar equally spaced spheres are dropped in a horizontal line, they interchange positions but do not separate when 0·06 < Re < 0·16. But, if 0·16 < Re < 3, one sphere is always left behind; which sphere depends critically upon the initial spacing. If three to six equal spheres, of 0·06 < Re < 7, start falling as a compact cluster, they eventually draw level and arrange themselves in the same horizontal plane at the vertices of a regular polygon. The polygon expands at a decreasing rate during fall. When three spheres are arranged initially in a horizontal isosceles triangle, the spheres oscillate about their equilibrium positions but eventually the spheres form a stable equil triagnle. If Re > 7, or the cluster contains 7 or more equal spheres, it shows no tendency to form a regular polygon but breaks up into two or more groups. A regular heptagon, and a hexagon with an additional sphere at its centre, are also unstable.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. Smoluchowski, M. S. 1912 Proc. 5th Int. Congr. Math. 2,192.

2. Hocking, L. M. 1958 Ph.D. Thesis, London University.

3. Goldstein, S. 1929 Proc. Roy. Soc. A,123,216.

4. Faxén, H. 1925 Arkiv. Math., Astron. Fysik,19a,13.

5. Matthews, H. W. & Smith, F. B. Brit. J. Appl. Phys. 11,87.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3