Abstract
Both the incompressible and supersonic laminar flow over a small, unsteady hump are considered. The Reynolds number is assumed large, and the analysis is based upon triple-deck theory. In the incompressible case disturbances tend to grow downstream, as a result of triggering the Tollmien–Schlichting mode of instability. For the supersonic case the flow disturbances tend to decay downstream across the entire frequency spectrum. However, for sufficiently large humps a seemingly catastrophic failure of the governing equations may occur, our results suggesting that this is caused by an inviscid, short-scale, Rayleigh type of instability.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献