Non-axisymmetric instability of centrifugally stable stratified Taylor–Couette flow

Author:

YAVNEH IRAD,MCWILLIAMS JAMES C.,MOLEMAKER M. JEROEN

Abstract

The stability is investigated of the swirling flow between two concentric cylinders in the presence of stable axial linear density stratification, for flows not satisfying the well-known Rayleigh criterion for inviscid centrifugal instability, d(Vr)2/dr < 0. We show by a linear stability analysis that a sufficient condition for non-axisymmetric instability is, in fact, d(V/r)2/dr < 0, which implies a far wider range of instability than previously identified. The most unstable modes are radially smooth and occur for a narrow range of vertical wavenumbers. The growth rate is nearly independent of the stratification when the latter is strong, but it is proportional to it when it is weak, implying stability for an unstratified flow. The instability depends strongly on a non-dimensional parameter, S, which represents the ratio between the strain rate and twice the angular velocity of the flow. The instabilities occur for anti-cyclonic flow (S < 0). The optimal growth rate of the fastest-growing mode, which is non-oscillatory in time, decays exponentially fast as S (which can also be considered a Rossby number) tends to 0. The mechanism of the instability is an arrest and phase-locking of Kelvin waves along the boundaries by the mean shear flow. Additionally, we identify a family of (probably infinitely many) unstable modes with more oscillatory radial structure and slower growth rates than the primary instability. We determine numerically that the instabilities persist for finite viscosity, and the unstable modes remain similar to the inviscid modes outside boundary layers along the cylinder walls. Furthermore, the nonlinear dynamics of the anti-cyclonic flow are dominated by the linear instability for a substantial range of Reynolds numbers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear stability of stratified, rotating, viscous plane Couette–Poiseuille flow;Journal of Fluid Mechanics;2024-07-25

2. Modal stability analysis of the density-stratified plane Couette–Poiseuille flow;Physics of Fluids;2024-04-01

3. Stably stratified Taylor–Couette flows;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

4. Submesoscale Dynamics in the Upper Ocean;Annual Review of Fluid Mechanics;2023-01-19

5. Inertio–elastic instability of a vortex column;Journal of Fluid Mechanics;2022-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3