On the deficiency of even-order structure functions as inertial-range diagnostics

Author:

DAVIDSON P. A.,KROGSTAD P.-Å.

Abstract

In the limit of vanishing viscosity, ν→0, Kolmogorov's two-thirds, 〈(Δυ)2〉~ε2/3r2/3, and five-thirds, E2/3k−5/3, laws are formally equivalent. (Here 〈(Δυ)2〉 is the second-order structure function, ε the dissipation rate, r the separation in physical space, E the three-dimensional energy spectrum, and k the wavenumber.) However, for the Reynolds numbers encountered in terrestrial experiments, or numerical simulations, it is invariably easier to observe the five-thirds law. We ask why this should be. To this end, we create artificial fields of isotropic turbulence composed of a random sea of Gaussian eddies whose size and energy distribution can be controlled. We choose the energy of eddies of scale, s, to vary as s2/3, in accordance with Kolmogorov's 1941 law, and vary the range of scales, γ=smax/smin, in any one realization from γ=25 to γ=800. This is equivalent to varying the Reynolds number in an experiment from Rλ=60 to Rλ=600. We find that, while there is some evidence of a five-thirds law for γ>50; (Rλ>100), the two-thirds law only starts to become apparent when γ approaches 200 (Rλ~240). The reason for this discrepancy is that the second-order structure function is a poor filter, mixing information about energy and enstrophy, and from scales larger and smaller than r. In particular, in the inertial range, 〈(Δυ)2〉 takes the form of a mixed power law, a1 + a2r2 + a3r2/3, where a2r2 tracks the variation in enstrophy and a3r2/3 the variation in energy. These findings are shown to be consistent with experimental data where the ‘pollution’ of the r2/3 law by the enstrophy contribution, a2r2, is clearly evident. We show that higher-order structure functions (of even order) suffer from a similar deficiency.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3