Buoyancy-driven ventilation between two chambers

Author:

LIN Y. J. P.,LINDEN P. F.

Abstract

A model of single-room displacement ventilation is extended to a space consisting of two chambers of equal height connected by two openings. Individually, both chambers have displacement ventilation in this geometrical arrangement, but the space itself is not connected to the outside. Thus we are considering ventilation of two chambers in the interior of a building, such as an office connected to an internal atrium. Theoretical analysis and experimental results are presented in this paper. The experiments use salt solutions to simulate thermal forcing in buildings and the theoretical analysis is based on plume theory. The two chambers have a time-dependent interaction resulting from changing stratification in the two chambers. We concentrate here on a small chamber with an internal heat source connected to a large unheated chamber, and show that the time variation is determined by the size of the larger chamber. We discuss the implications of these results for building ventilation design and control.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3