Hydrodynamical instabilities of thermocapillary flow in a half-zone

Author:

Levenstam Måarten,Amberg Gustav

Abstract

The stability of the flow in a half-zone configuration is analysed with the aid of direct numerical simulation. The work is concentrated on the small Prandtl numbers relevant for typical semiconductor melts. The axisymmetric thermocapillary flow is found to be unstable to a steady non-axisymmetric state with azimuthal wavenumber 2, for a zone with aspect ratio 1. The critical Reynolds number for this bifurcation is 1960. This three dimensional steady solution loses stability to an oscillatory state at a Reynolds number of 6250. For small Prandtl numbers, both bifurcations are seen to be quite insensitive to changes in the Prandtl number, and are thus hydrodynamic in nature. An analogy to the instability of thin vortex rings is made. This analogy suggests a physical mechanism behind the instability and also gives an explanation of how the azimuthal wavenumber of the bifurcated solution is selected. The implications of this for the floating-zone crystal growth process are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Hansbo, P. & Szepessy, A. 1990 A velocity pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations.Computer Meth. Appl. Mech. Engng 84,175–192.

2. Smith, M. K. 1988 The nonlinear stability of dynamic thermocapillary liquid layers.J. Fluid Mech. 194,391–415.

3. Kazarinoff, N. D. & Wilkowski, J. S. 1989 A numerical study of marangoni flows in zone-refined silicon crystals.Phys. Fluids A 1,625–627.

4. Smith, M. K. & Davis, S. H. 1983a Instabilities of dynamic thermocapillary liquid layers. Part 1. convective instabilities.J. Fluid Mech. 132,119–144.

5. Neitzel, G. P. , Chang, K. T. , Jankowski D. F. & Mittelmann H. D. 1993 Linear stability theory of thermocapillary convection in a model of the float-zone crystal-growth process.Phys. Fluids A 5,108–114.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3