The finite-length square cylinder near wake

Author:

WANG H. F.,ZHOU Y.

Abstract

This paper reports an experimental investigation of the near wake of a finite-length square cylinder, with one end mounted on a flat plate and the other free. The cylinder aspect ratio or height-to-width ratio H/d ranges from 3 to 7. Measurements were carried out mainly in a closed-loop low-speed wind tunnel at a Reynolds number Red, based on d and the free-stream velocity of 9300 using hot-wire anemometry, laser Doppler anemometry and particle image velocimetry (PIV). The planar PIV measurements were performed in the three orthogonal planes of the three-dimensional cylinder wake, along with flow visualization conducted simultaneously in two orthogonal planes (Red = 221). Three types of vortices, i.e. the tip, base and spanwise vortices were observed and the near wake is characterized by the interactions of these vortices. Both flow visualization and two-point correlation point to an inherent connection between the three types of vortices. A model is proposed for the three-dimensional flow structure based on the present measurements, which is distinct from previously proposed models. The instantaneous flow structure around the cylinder is arch-type, regardless of H/d, consisting of two spanwise vortical ‘legs’, one on each side of the cylinder, and their connection or ‘bridge’ near the free end. Both tip and base vortices are the streamwise projections of the arch-type structure in the (y, z) plane, associated with the free-end downwash flow and upwash flow from the wall, respectively. Other issues such as the topological characteristics, spatial arrangement and interactions among the vortical structures are also addressed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3