Transient natural convection flows around a thin fin on the sidewall of a differentially heated cavity

Author:

XU FENG,PATTERSON JOHN C.,LEI CHENGWANG

Abstract

Transient natural convection flows around a thin fin on the sidewall of a differentially heated cavity, which includes a lower intrusion under the fin, a starting plume bypassing the fin and a thermal flow entrained into the vertical thermal boundary layer downstream of the fin in a typical case, are investigated using a scaling analysis and direct numerical simulations. The obtained scaling relations show that the thickness and velocity of the transient natural convection flows around the fin are determined by different dynamic and energy balances, which can be either a buoyancy-viscous balance or a buoyancy-inertial balance, depending on the Rayleigh number, the Prandtl number and the fin length. A time scale of the transition from a buoyancy-viscous flow regime to a buoyancy-inertial flow regime is obtained. The major scaling relations quantifying the transient natural convection flows are also validated by direct numerical simulations. In general, there is a good agreement between the scaling predictions and the corresponding numerical results.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3