A statistical model of turbulence in two-dimensional mixing layers

Author:

Tam Christopher K. W.,Chen K. C.

Abstract

A statistical model based on the proposition that the turbulence of a fully developed two-dimensional incompressible mixing layer is in a state of quasi-equilibrium is developed. In this model the large structures observed by Brown & Roshko (1974) which will be assumed to persist into the fully developed turbulent region are represented by a superposition of the normal wave modes of the flow with arbitrary random amplitudes. The turbulence at a point in the flow is assumed to be dominated by the fluctuations associated with these large structures. These structures grow and amalgamate as they are convected in the flow direction. Because of the lack of intrinsic length and time scales the turbulence in question can, therefore, be regarded as created or initiated at an upstream point, the virtual origin of the mixing layer, by turbulence with a white noise spectrum and are subsequently convected downstream. The model is used to predict the second-order turbulence statistics of the flow including single point turbulent Reynolds stress distribution, intensity of turbulent velocity components, root-mean-square turbulent pressure fluctuations, power spectra and two-point space-time correlation functions. Numerical results based on the proposed model compare favourably with available experimental measurements. Predictions of physical quantities not yet measured by experiments, e.g. the root-mean-square pressure distribution across the mixing layer, are also made. This permits the present model to be further tested experimentally.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3