Modulated rotating waves in an enclosed swirling flow

Author:

BLACKBURN H. M.,LOPEZ J. M.

Abstract

The loss of axisymmetry in a swirling flow that is generated inside an enclosed cylindrical container by the steady rotation of one endwall is examined numerically. The two dimensionless parameters that govern these flows are the cylinder aspect ratio and a Reynolds number associated with the rotation of the endwall. This study deals with a fixed aspect ratio, height/radius = 2.5. At low Reynolds numbers the basic flow is steady and axisymmetric; as the Reynolds number increases the basic state develops a double recirculation zone on the axis, so-called vortex breakdown bubbles. On further increase in the Reynolds number the flow becomes unsteady through a supercritical Hopf bifurcation but remains axisymmetric. After the onset of unsteadiness, another two unsteady axisymmetric solution branches appear with further increase in Reynolds number, each with its own temporal characteristic: one is periodic and the other is quasi-periodic with a very low frequency modulation. Solutions on these additional branches are unstable to three-dimensional perturbations, leading to nonlinear modulated rotating wave states, but with the flow still dominated by the corresponding underlying axisymmetric mode. A study of the flow behaviour on and bifurcations between these solution branches is presented, both for axisymmetric and for fully three-dimensional flows. The presence of modulated rotating waves alters the structure of the bifurcation diagram and gives rise to its own dynamics, such as a truncated cascade of period doublings of very-low-frequency modulated states.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3