Author:
DAVIS ANTHONY M. J.,LAUGA ERIC
Abstract
A fluid droplet located on a superhydrophobic surface makes contact with the surface only at small isolated regions, and is mostly in contact with the surrounding air. As a result, a fluid in motion near such a surface experiences very low friction, and superhydrophobic surfaces display strong drag reduction in the laminar regime. Here we consider theoretically a superhydrophobic surface composed of circular posts (so-called fakir geometry) located on a planar rectangular lattice. Using a superposition of point forces with suitably spatially dependent strength, we derive the effective surface-slip length for a planar shear flow on such a fakir-like surface as the solution to an infinite series of linear equations. In the asymptotic limit of small surface coverage by the posts, the series can be interpreted as Riemann sums, and the slip length can be obtained analytically. For posts on a square lattice, our analytical prediction of the dimensionless slip length, in the low surface coverage limit, is in excellent quantitative agreement with previous numerical computations.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献