Improved milking characteristics of teatcups fitted with non-return valves

Author:

Andrews R. Jeffrey,Mein Graeme A.,Brown Murray R.

Abstract

SummaryThe milking characteristics of conventional clusters were compared with individual teatcups or clusters fitted with valves in the short milk tubes without external air admission to the liners. Individual teatcups fitted with non-return valves had peak milk flow rates 13% higher than conventional teatcups. A daily cross-over experiment involving 36 cows compared clusters fitted with non-return valves to conventional clusters. Valved clusters milked 18% faster, showed significantly better teatcup stability and 3% higher machine milk yields, but 48% higher strip yields were recorded. Clusters with non-return valves were difficult to remove after milking because the valve closed when the vacuum supply was shut off, thereby maintaining the vacuum level under the teats. When the nominal plant vacuum level for teatcups with non-return valves was reduced by 10 kPa to compensate for the higher effective milking vacuum level, the valved teatcups had peak flow rates 20% lower than the conventional teatcups. Clusters fitted with a modified valve, which allowed some reverse flow when closed (a ‘leaky’ valve), milked significantly faster than conventional clusters, had 33% lower strip yields and were easy to remove after milking.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

Reference28 articles.

1. Increased milking vacuum in teatcups fitted with non-return valves

2. Stripping;Brandsma;Dairy Science Abstracts,1969

3. A comparison of the milking characteristics of teatcup liners;Gibb;Australian Journal of Dairy Technology,1976

4. Air leakage past the teat and teatcup liner during milking;Mein;Australian Journal of Dairy Technology,1973

5. Effects of Vacuum Level and Milking Duration on Milk Production, Milking Time and Rate of Milk Flow in Mastitis-Free First Calf Heifers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3