Author:
Rico Daniel E.,Gervais Rachel,Peňa-Cotrino Sara M.,Lebeuf Yolaine,Chouinard P. Yvan
Abstract
AbstractOur objective was to study the effect of increasing postruminal supply of linseed oil (L-oil), as a source of cis-9, cis-12, cis-15 18:3, on milk fatty acid profile and to assess the resulting impact on the development of volatile degradation products during the storage of homogenized milk. Five Holstein dairy cows fitted with a rumen cannula were randomly distributed in a 5 × 5 Latin square design. Abomasal infusion of L-oil was performed at the rate of 0, 75, 150, 300, and 600 ml/d during periods of 14 d. The concentration of cis-9, cis-12, cis-15 18:3 in milk fat increased linearly with L-oil dose. Concentrations of primary (conjugated diene and triene hydroperoxides) and secondary oxidation products (1-octen-3-one, propanal, hexanal, trans-2 + cis-3-hexenals, cis-4-heptenal, trans-2, cis-6-nonadienal trans-2, trans-4-nonadienal) increased during 11 d of storage at 4°C of homogenized milk under fluorescent light. The magnitude of the increase (difference between final and initial measurements) was linearly greater for all nine lipid oxidation products evaluated in response to increasing level of infusion. Results of the current experiment have shown that milk enriched in cis-9, cis-12, cis-15 18:3 via postruminal supply of L-oil is highly prone to oxidative degradation. This low oxidative stability, exposed under controlled experimental conditions, would represent a major obstacle to those who aim to market milk enriched in polyunsaturated fatty acids.
Publisher
Cambridge University Press (CUP)
Subject
Animal Science and Zoology,General Medicine,Food Science