Limb and skeletal muscle blood flow measurements at rest and during exercise in human subjects

Author:

Rådegran Göran

Abstract

The aim of the present review is to present techniques used for measuring blood flow in human subjects and advice as to when they may be applicable. Since blood flow is required to estimate substrate fluxes, energy turnover and metabolic rate of skeletal muscle, accurate measurements of blood flow are of extreme importance. Several techniques have therefore been developed to enable estimates to be made of the arterial inflow to, venous outflow from, or local blood flow within the muscle. Regional measurements have been performed using electromagnetic flow meters, plethysmography, indicator methods (e.g. thermodilution and indo-cyanine green dye infusion), ultrasound Doppler, and magnetic resonance velocity imaging. Local estimates have been made using 133Xe clearance, microdialysis, near i.r. spectroscopy, positron emission tomography and laser Doppler. In principle, the aim of the study, the type of interventions and the limitations of each technique determine which method may be most appropriate. Ultrasound Doppler and continuous indo-cyanine green dye infusion gives the most accurate limb blood flow measurements at rest. Moreover, the ultrasound Doppler is unique, as it does not demand a steady-state, and because its high temporal resolution allows detection of normal physiological variations as well as continuous measurements during transitional states such as at onset of and in recovery from exercise. During steady-state exercise thermodilution can be used in addition to indo-cyanine green dye infusion and ultrasound Doppler, where the latter is restricted to exercise modes with a fixed vessel position. Magnetic resonance velocity imaging may in addition be used to determine blood flow within deep single vessels. Positron emission tomography seems to be the most promising tool for local skeletal muscle blood-flow measurements in relation to metabolic activity, although the mode and intensity of exercise will be restricted by the apparatus design.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3