Polyol-assimilation capacities of lichen-inhabiting fungi

Author:

Yoshino KanamiORCID,Yamamoto Kohei,Masumoto Hiroshi,Degawa Yousuke,Yoshikawa Hiroko,Harada Hiroshi,Sakamoto Kazunori

Abstract

AbstractFungi are one of the most diverse carbon source-assimilating organisms, living as saprobes, parasites and symbionts; they play an important role in carbon cycling in the ecosystem. A lichen thallus provides habitats for many non-lichenized fungi and usually contains large quantities of polyols. However, research has not been undertaken to identify carbon sources of lichen-inhabiting fungi. In this study, we isolated various lichen-inhabiting fungi from surface-sterilized Ramalina spp., Flavoparmelia caperata and Peltigera degenii, and demonstrated their ability to assimilate carbon sources, namely glucose, ribitol and mannitol. Several isolates efficiently assimilated mannitol and ribitol; however, most isolates could assimilate only mannitol or both ribitol and mannitol at low levels. It is suggested that there are different preferences and niche segregation of carbon sources among lichen-inhabiting fungi, and that this assemblage includes fungi with different lifestyles such as saprobes, endophytes and transient visitors.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3