Oxidative stress caused by a dysregulated Wnt/β-catenin signalling pathway is involved in abnormal placenta formation in pregnant mice with chronic fatigue syndrome

Author:

Zhao HaiORCID,Zhang Jian,Qian Ning,Wu Shuguang,Wu Yanjun,Yao Gang

Abstract

SummaryChronic fatigue syndrome (CFS) is characterized by extreme fatigue and disabling symptoms. Women with CFS often have a high risk of gynaecological problems such as irregular menstruation, endometriosis and pelvic pain and sexual dysfunction. Our previous results have shown that, in pregnant mice, CFS significantly decreased the progestational hormone level in serum, as well as learning and memory, and the function of the hypothalamus–pituitary–gonadal axis. In addition, the F1 generation also suffered from congenital hypothyroidism. At present, there has been no report about placenta formation and embryonic development in pregnant mice with CFS. The aim of the present study was to investigate the influence of CFS on the morphology, oxidative stress and Wnt/β-catenin signalling pathway during placenta formation. In this study, we found that CFS decreased the number of implantation sites for blastocysts, and increased the number of absorbed, stillborn and malformed fetuses. The morphology and structure of the placenta were abnormal in pregnant mice with CFS. Further study found that the oxidative stress in serum, uterus and placenta was increased in pregnant mice with CFS, while the levels of antioxidase were decreased. CFS also inhibited the Wnt/β-catenin signalling pathway in the placenta. These results suggested that inhibition of the Wnt/β-catenin signalling pathway and enhanced oxidative stress play an important role in abnormal placentation in pregnant mice with CFS.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3