Design, modeling and control of an index finger exoskeleton for rehabilitation

Author:

Talat Hassan,Munawar HammadORCID,Hussain Hamza,Azam Usama

Abstract

AbstractWith diverse areas of applications, wearable robotic exoskeleton devices have gained attention in the past decade. These devices cover one or more human limbs/joints and have been presented for rehabilitation, strength augmentation and interaction with virtual reality. This research is focused towards design, modeling and control of a novel series elastic actuation (SEA) based index finger exoskeleton with a targeted torque rendering capability of 0.3 Nm and a force control bandwidth of 3 Hz. The proposed design preserves the natural range of motion of the finger by incorporating five passive and two actively actuated joints and provides active control of metacarpophalangeal and proximal interphalangeal joints. Forward and inverse kinematics for both position and velocity have been solved using closed loop vector analysis by including human finger as an integral part of the system. For accurate force control, a cascaded control structure has been presented. Force controlled trajectories have been proposed to guide the finger along preprogrammed virtual paths. Such trajectories serve to gently guide the finger towards the correct rehabilitation protocol, thus acting as an effective replacement of intervention by a human therapist. Extensive computer simulations have been performed before fabricating a prototype and performing experimental validation. Results show accurate modeling and control of the proposed design.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3