A modular computational framework for the dynamic analyses of cable-driven parallel robots with different types of actuation including the effects of inertia, elasticity and damping of cables

Author:

Mamidi Teja KrishnaORCID,Bandyopadhyay SandipanORCID

Abstract

AbstractDynamic simulations of the cable-driven parallel robots (CDPRs) with cable models closer to reality can predict the motions of moving platforms more accurately than those with idealisations. Hence, the present work proposes an efficient and modular computational framework for this purpose. The primary focus is on the developments required in the context of CDPRs actuated by moving the exit points of cables while the lengths are held constant. Subsequently, the framework is extended to those cases where simultaneous changes in the lengths of cables are employed. Also, the effects due to the inertia, stiffness and damping properties of the cables undergoing 3D motions are included in their dynamic models. The efficient recursive forward dynamics algorithms from the prior works are utilised to minimise the computational effort. Finally, the efficacy of the proposed framework and the need for such an inclusive dynamic model are illustrated by applying it to different application scenarios using the spatial $4$ - $4$ CDPR as an example.

Publisher

Cambridge University Press (CUP)

Reference42 articles.

1. [4] Saha, S. K. , “The UDU ${}^\top$ Decomposition of Manipulator Inertia Matrix,” In: Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan (IEEE, 1995) pp. 2829–2834.

2. Forward dynamic analyses of cable-driven parallel robots with constant input with applications to their kinetostatic problems

3. Cable-Driven Parallel Robots

4. [17] Lee, T. , Sreenath, K. and Kumar, V. , “Geometric Control of Cooperating Multiple Quadrotor UAVs with a Suspended Payload,” In: Proceedings of the 52nd IEEE Conference on Decision and Control, 10-13, Firenze, Italy (IEEE, 2013) pp. 5510–5515.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3