Control of flexible knee joint exoskeleton robot based on dynamic model

Author:

Liu BiaoORCID,Liu YouWei,Zhou Zikang,Xie Longhan

Abstract

SummaryThe knee joint plays a significant role in ground clearness, which is a crucial subtask of normal walking and avoiding falls. While post-stroke survivors are often faced with muscle weakness during walking, which leads to inadequate knee flexion. The lack of ground clearance caused by inadequate knee flexion will severely impede walking, increase metabolic exertion, and increase the risk of falls. A compliant exoskeleton robot possesses more favorable edges than other rigid ones in lightweight, safety, sense of comfort, and so on. We developed a new type of soft exoskeleton robot to assist the knee joint to achieve desired movements with Bowden cable transmitting force and torque. With the agonist–antagonist driving method, like a group of muscles working, we have explored dual-motors structure to realize the knee flexion function. It has built a standard dynamic model to analyze stability and realize the control law. We have conducted simulation and prototype experiments to verify the feasibility and usefulness of our method. The results show that the device can compensate for the lack of the knee joint driving force and realize the reference movement. Finally, we concluded that our method is a desirable way, and the scheme could improve the knee flexion ability and clearing ground.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Reference35 articles.

1. Effect of timing of hip extension assistance during loaded walking with a soft exosuit

2. [26] Vundavilli, P. R. and Pratihar, D. K. , “Dynamically Balanced Ascending Gait Generation of a Biped Robot Negotiating Staircase.” 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems. IEEE.pp. 1–6.

3. A soft robotic exosuit improves walking in patients after stroke

4. Twisted String Actuators: Life Cycle, Twisting inside Bowden Cables, and Passive Return Mechanisms;Gaponov;Stroke,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3