Design and performance analysis of a novel class of SMA-driven rotational mechanisms/joints

Author:

Zhou HaiqinORCID,Cao Shunze,Ma NanORCID

Abstract

AbstractThe rotational joint plays a vital role in the industrial and civil areas, which is typically utilized to achieve the relative rotation between the adjacent parts. Generally, structuring a conventional rotational joint involves the bulk actuators (e.g., motor and hydraulic cylinders) and complex structures, bringing difficulty for miniaturing the dimension. In this paper, a class of novel rotational mechanisms, which were constructed by the combination of compliant mechanisms (e.g., cartwheel pivot and multileaf pivot) and intelligent actuator (e.g., shape memory alloy (SMA) wire and spring), was proposed to reduce the complexity of the conventional rotational joints. As the case study, a novel SMA wire-driven flexural rotational mechanism (SDFRM), which is constructed by the cartwheel pivot and SMA wire, was developed to demonstrate the feasibility of combining the compliant mechanism and smart actuator. After establishing the static model of the cartwheel pivot and the thermal effect model of the SMA wire, the overall model of SDFRM was developed for the comprehensive performance analysis and the control system design. After that, the model validation and experiments were performed with the proposed prototype and control system. It can be seen from the experimental results that the proposed model can be validated within the error of 3.8%. In addition, the performance study on SDFRM indicates that the prototyped SDFRM system can track the given trajectories within the error of 0.2 mm in the workspace. As a result, the proposed concept was demonstrated as an effective way to reduce the dimension and weight of the conventional rotational joint.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3