Abstract
AbstractThe control of industrial robot manipulators presents a difficult problem for control engineers due to the complexity of their nonlinear dynamics models. Nonlinear controls based on feedback linearization are developed to meet control requirements. Model-based nonlinear control is highly sensitive to parameter errors and leads to problems of robustness for tracking trajectories at high speeds, and there is the additional problem of a heavy computational burden to consider in the design of nonlinear controllers. In this paper, a mechatronic design approach is proposed, which aims to facilitate controller design by redesigning the mechanical structure. The problem is approached in two steps: first, the dynamic decoupling conditions of manipulators are described and discussed, involving redistribution of the moving mass, which leads to the decoupling of motion equations. A classical linear control law is then used to track the desired efficient bang-bang profile trajectory. Then, in the presence of parameter uncertainty and external disturbances, the nonlinear controls with simple structures are adopted to stabilize the decoupled system asymptotically. An analysis of the results from a simulation of this approach demonstrates its effectiveness in controller design. The proposed improvement in control performance is illustrated via two spatial manipulators.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献