Jigless assembly of an industrial product by a universal robotic hand mounted on an industrial robot

Author:

Fukuda Takahito,Dobashi HirokiORCID,Nagano HikaruORCID,Tazaki YuichiORCID,Katayama Raita,Yokokohji YasuyoshiORCID

Abstract

AbstractThis paper demonstrates that “completely-jigless” assembly of a model product that requires fitting accuracy at the level of industrial products is possible by using a universal hand with four parallel stick fingers mounted on a conventional position-control-based industrial robot. Assuming that each part is taken out of the parts bin and temporarily placed on the work table, the accuracy required for precise fitting cannot be achieved with a vision sensor alone. Introducing an appropriate grasping strategy, the initial position error of the part is absorbed by self-alignment in the process of grasping. Once the alignment is completed, the pose of the grasped part is fixed and jigless assembly is possible with a conventional industrial robot, which has high repeatability. In this paper, we use a gear unit as an example of an industrial product and present some grasping strategies with the universal hand. We also propose some subsequent assembly strategies for shafts and gears. Using those grasping and assembly strategies, it is shown that jigless assembly of the gear unit was successfully completed in the experiment. Although the target product in this paper is specific, the assembly elements in this product, such as shaft screwing, bearing insertion, and gear meshing, are also included in many other products. Therefore, the methods shown in this paper can be applied to other products.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference37 articles.

1. Agile Assembly System by “Plug and Produce”

2. Towards robot cell matrices for agile production - SDU Robotics’ assembly cell at the WRC 2018;Schlette;Adv. Robot.,2020

3. Proposal of a shape adaptive gripper for robotic assembly tasks

4. Designing robot grippers: optimal edge contacts for part alignment

5. Passive alignment principle for robotic assembly between a ring and a shaft with extremely narrow clearance;Takahashi;IEEE/ASME Trans. Mechatron.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3