The Effect of Subglacial Chemical Processes on Glacier Sliding

Author:

Hallet Bernard

Abstract

AbstractThe glacier sliding theory of Nye is modified to include the effect of solutes in subglacial regelation waters on the sliding process. Motivation for this development stems from studies of subglacially formed chemical deposits that appear to be widespread on rock surfaces recently exposed by retreating temperate glaciers. These deposits indicate clearly that considerable local concentration of solutes commonly occurs subglacially as a result of the selective rejection of solutes into the melt during the freezing associated with regelation sliding. Because solutes accumulate where regelation waters refreeze, they tend to lower the temperature there and hence inhibit the heat transport away from these areas that is essential for regelation sliding. For a simple sinusoidal bed and solute distribution in the regelation water film, the modified theory shows that a maximum excess of solutes of, for example, several millimoles/1 of dissolved CaCo3along lee surfaces relative to stoss surfaces impedes basal sliding significantly, especially if the bed roughness wavelength does not exceed about one meter.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observing the subglacial hydrology network and its dynamics with a dense seismic array;Proceedings of the National Academy of Sciences;2021-07-06

2. Principles of Glacier Mechanics;2019-12-05

3. Index;Principles of Glacier Mechanics;2019-12-05

4. References;Principles of Glacier Mechanics;2019-12-05

5. Problems;Principles of Glacier Mechanics;2019-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3