Analysis and Modeling of Melt-Water Refreezing in Dry Snow

Author:

Tad Pfeffer W.,Illangasekare Tissa H.,Meier Mark F.

Abstract

AbstractA dynamic zone of thermal disequilibrium is described which separates wet snow at 0 ° C from dry, sub-freezing snow. The dynamic zone tends to be eliminated by thermal equilibrium through freezing, but is sustained and propagated into the sub-freezing snow by water flow from the wet snow. The width of the dynamic zone is controlled by the rate of water inflow, and by the rate of freezing of water on to sub-freezing ice grains, which is in turn controlled by the ice/water geometry. Two ice/water geometries are investigated: isolated ice spheres and capillary tubes of ice into which water is pulled by capillary suction. The rate of freezing of water is calculated for the two models for various initial dimensions and temperatures. Equilibrium times are short (typically about 0.5 s), but depend on the assumed geometry, which is poorly constrained by existing data. Equilibration times and freeze-on mass fluxes are calculated for a variety of general conditions. These results can be used in numerical models of wetting-front propagation into cold snow.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3