Thermal effects due to air flow and vapor transport in dry snow

Author:

Albert M. R.,Mcgilvary W. R.

Abstract

AbstractThe thermal effects of air flow forced through a snow sample are investigated numerically. A new method for calculating vapor transport in snow is presented which allows for the determination of the effects of sublimation. In this method, the snow is not assumed to be saturated with water vapor. Results of the model show very good agreement with analytical and experimental results. The effects of heat conduction, heat advected by the dry air and heat associated with sublimation are examined in a comprehensive theory, and then each effect is isolated to determine its overall contribution. It is demonstrated that the heat transfer associated with vapor transport is significant in the determination of the overall temperature profile of a ventilated snow sample but that the major effects are controlled by the heat carried by the dry air flow through the snow and heat conduction due to the temperatures imposed at the boundaries. The thermal effects of ventilation of snow are more likely to be observed when there is a smaller temperature gradient over the entire snowpack and a greater flow rate of air in the snow than would be observed when there is a greater overall temperature gradient and lesser air-flow rate.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3