The Glide Direction in Ice

Author:

Kamb W. Barclay

Abstract

AbstractThe failure to detect experimentally a glide direction in the ice crystal is satisfactorily explained by assuming that the crystal glides simultaneously in three symmetry-equivalent directions with a response to the shear stress component in each direction that is the same as that observed for the crystal as a whole or for polycrystalline aggregates—the typical non-linear, power-type flow law. A hexagonal crystal responding to stress by this type of “non-linear crystal viscosity” behaves very differently from a tetragonal one. For a tetragonal crystal, the glide directions are well defined in the response of the crystal if the power-flow-law exponent n exceedsn~ 1·5, whereas for a hexagonal crystal a well-defined glide direction can be observed only ifn>c. 5. The response of a hexagonal crystal is entirely independent ofa-axis orientation ifn= 3 exactly. For 3 <n<c. 5 the true glide direction should be weakly apparent, whereas for 1 <n< 3 the crystal should show a response weakly suggestive of preferred glide in a direction perpendicular to the true glide direction. In the observed range ofnvalues for ice, 2 <n< 4, the expected response to simultaneous glide differs so slightly from the hitherto-postulateda-axis-independent, “non-crystallographic” glide as to be practically undetectable experimentally. This circumstance makes it possible to identify <>as the glide direction, from structural considerations alone, and to accommodate the plastic properties of the ice crystal into the modern concepts of crystal plasticity. It may be expected that hexagonal close packed and face-centred cubic metals at high temperatures, in steady state creep, will show translation gliding without well-defined glide directions.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3