Abstract
Consider a system that is subject to a sequence of randomly occurring shocks; each shock causes some damage of random magnitude to the system. Any of the shocks might cause the system to fail, and the probability of such a failure is a function of the sum of the magnitudes of damage caused from all previous shocks.
The purpose of this paper is to derive the optimal replacement rule for such a system whose cumulative damage process is a semi-Markov process. This allows for both the time between shocks and the damage due to the next shock to be dependent on the present cumulative damage level.
Only policies within the class of control-limit policies will be considered; namely, policies with which no action is taken if the damage is below a fixed level, and a replacement is made if the damage is above that.
An example will be given illustrating the use of the optimal replacement rule.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献