Methods for High-Precision 14C AMS Measurement of Atmospheric CO2 at LLNL

Author:

Graven Heather D,Guilderson Thomas P,Keeling Ralph F

Abstract

Development of radiocarbon analysis with precision better than 2% has the potential to expand the utility of 14CO2 measurements for carbon cycle investigations as atmospheric gradients currently approach the typical measurement precision of 2–5%. The accelerator mass spectrometer at Lawrence Livermore National Laboratory (LLNL) produces high and stable beam currents that enable efficient acquisition times for large numbers of 14C counts. One million 14C atoms can be detected in approximately 25 min, suggesting that near 1% counting precision is economically feasible at LLNL. The overall uncertainty in measured values is ultimately determined by the variation between measured ratios in several sputtering periods of the same sample and by the reproducibility of replicate samples. Experiments on the collection of 1 million counts on replicate samples of CO2 extracted from a whole air cylinder show a standard deviation of 1.7% in 36 samples measured over several wheels. This precision may be limited by the reproducibility of oxalic acid I standard samples, which is considerably poorer. We outline the procedures for high-precision sample handling and analysis that have enabled reproducibility in the cylinder extraction samples at the <2% level and describe future directions to continue increasing measurement precision at LLNL.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of pixelated silicon detector for AMS study;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-07

2. Measurement and analysis of biomass content using gas emissions from solid refuse fuel incineration;Waste Management;2021-02

3. Novel Method of Extraction for Radiocarbon Measurements of Atmospheric Carbon dioxide;Radiocarbon;2019-11-28

4. 14C evidence that millennial and fast-cycling soil carbon are equally sensitive to warming;Nature Climate Change;2019-05-13

5. Analysis of environmental radionuclides;Handbook of Radioactivity Analysis: Volume 2;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3