Reconstruction of climate and ecology of Skagit Valley, Washington, from 27.7 to 19.8 ka based on plant and beetle macrofossils

Author:

Riedel Jon L.ORCID,Telka Alice,Bunn Andy,Clague John J.

Abstract

Abstract Glacial lake sediments exposed at two sites in Skagit Valley, Washington, encase abundant macrofossils dating from 27.7 to 19.8 cal ka BP. At the last glacial maximum (LGM) most of the valley floor was part of a regionally extensive arid boreal (subalpine) forest that periodically included montane and temperate trees and open boreal species such as dwarf birch, northern spikemoss, and heath. We used the modern distribution and climate of 14 species in 12 macrofossil assemblages and a probability density function approach to reconstruct the LGM climate. Median annual precipitation (MAP) at glacial Lake Concrete (GLC) was ~50% lower than today. In comparison, MAP at glacial Lake Skymo (GLS) was only ~10% lower, which eliminated the steep climate gradient observed today. Median January air temperature at GLC was up to 10.8°C lower than today at 23.5 cal ka BP and 8.7°C lower at GLS at 25.1 cal ka BP. Median July air temperature declines were smaller at GLC (3.4°C–5.0°C) and GLS (4.2°C–6.3°C). Warmer winters (+2°C to +4°C) and increases in MAP (+200 mm) occurred at 27.7, 25.9, 24.4, and 21.2–20.7 cal ka BP. These changes accord with other regional proxies and Dansgaard–Oeschger interstades in the North Atlantic.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference104 articles.

1. To what extent did changes in July temperature influence Lateglacial vegetation patterns in NW Europe?

2. Evidence for Younger Dryas-age cooling on the North Pacific coast of America

3. R Core Team, 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3